Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38366911

RESUMO

Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.


Assuntos
Methylocystaceae , Solo , Methylocystaceae/genética , Temperatura , Camada de Gelo , Temperatura Baixa , Metano , Água , DNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-38259170

RESUMO

A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.


Assuntos
Methylocystaceae , Methylocystaceae/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bactérias , Metano
3.
Environ Microbiol ; 25(11): 2338-2350, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395163

RESUMO

Copper plays a critical role in controlling greenhouse gas emissions as it is a key component of the particulate methane monooxygenase and nitrous oxide reductase. Some methanotrophs excrete methanobactin (MB) that has an extremely high copper affinity. As a result, MB may limit the ability of other microbes to gather copper, thereby decreasing their activity as well as impacting microbial community composition. Here, we show using forest soil microcosms that multiple forms of MB; MB from Methylosinus trichosporium OB3b (MB-OB3b) and MB from Methylocystis sp. strain SB2 (MB-SB2) increased nitrous oxide (N2 O) production as well caused significant shifts in microbial community composition. Such effects, however, were mediated by the amount of copper in the soils, with low-copper soil microcosms showing the strongest response to MB. Furthermore, MB-SB2 had a stronger effect, likely due to its higher affinity for copper. The presence of either form of MB also inhibited nitrite reduction and generally increased the presence of genes encoding for the iron-containing nitrite reductase (nirS) over the copper-dependent nitrite reductase (nirK). These data indicate the methanotrophic-mediated production of MB can significantly impact multiple steps of denitrification, as well as have broad effects on microbial community composition of forest soils.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Cobre , Óxido Nitroso , Methylocystaceae/genética , Methylosinus trichosporium/genética , Nitrito Redutases , Solo
4.
PLoS One ; 18(5): e0284846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163531

RESUMO

Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain. Methylocystis sp. MJC1 accumulates up to 44.5% of PHB based on dry cell weight under nitrogen-limiting conditions. To facilitate its development as a PHB-producing platform strain, the complete genome sequence of Methylocystis sp. MJC1 was assembled, functionally annotated, and compared with genomes of other Methylocystis species. Phylogenetic analysis has shown that Methylocystis parvus to be the closest species to Methylocystis sp. MJC1. Genome functional annotation revealed that Methylocystis sp. MJC1 contains all major type II methanotroph biochemical pathways such as the serine cycle, EMC pathway, and Krebs cycle. Interestingly, Methylocystis sp. MJC1 has both particulate and soluble methane monooxygenases, which are not commonly found among Methylocystis species. In addition, this species also possesses most of the RuMP pathway reactions, a characteristic of type I methanotrophs, and all PHB biosynthetic genes. These comparative analysis would open the possibility of future practical applications such as the development of organism-specific genome-scale models and application of metabolic engineering strategies to Methylocystis sp. MJC1.


Assuntos
Metano , Methylocystaceae , Filogenia , Metano/metabolismo , Genômica , Methylocystaceae/genética , Methylocystaceae/metabolismo
5.
mBio ; 13(5): e0223922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36129259

RESUMO

Methanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of mbnT2 or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of mbnT2 is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by mbnI2 and mbnR2, respectively. Deletion of mbnI2R2 or excision of the N-terminal region of MbnT2 abolished induction of mbnT2. However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2. IMPORTANCE Methanotrophs play a critical role in the global carbon cycle, as well as in future strategies for mitigating climate change through their consumption of methane, a trace atmospheric gas much more potent than carbon dioxide in global warming potential. Copper uptake is critical for methanotrophic activity, and here, we show different approaches for copper uptake. This study expands our knowledge and understanding of how methanotrophs collect and compete for copper, and such information may be useful in future manipulation of methanotrophs for a variety of environmental and industrial applications.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Cobre/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Methylocystaceae/genética , Methylocystaceae/química , Methylocystaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metano/metabolismo
6.
Arch Microbiol ; 203(5): 2343-2350, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33655406

RESUMO

A Gram-staining negative, facultative anaerobic, motile and short rod-shaped bacterium, designated strain yh7-1T, was isolated from rhizosphere soil of Citrus sinenesis collected from the garden of Citrus sinenesis in Ailao Mountain, south-west China. Cells grew at 15-45 °C, pH 5.0-9.0 and were able to tolerate up to 1% (w/v) NaCl on R2A medium. The respiratory lipoquinone was Q-10 and the major cellular fatty acids contained summed feature 8 (C18:1 ω7c or C18:1 ω6c) and C18:0. Polar lipids in the cellular membrane were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and one unidentified aminophospholipid. The genomic DNA G+C content was 69.9 mol%. On basis of 16S rRNA gene sequence analysis, strain yh7-1T showed the highest similarities with Chthonobacter albigriseus KCTC 42450T (97.6%), Mongoliimonas terrestris KCTC 42635T (97.0%) and lower than 97.0% to other species. Phylogenetic trees based on 16S rRNA gene sequences indicated that strain yh7-1T clustered with C. albigriseus KCTC 42450T. The ANI values ranged between 78.1 and 82.7% for C. albigriseus KCTC 42450T, M. terrestris KCTC 42635T and strain yh7-1T, which were lower than the prokaryotic species delineation threshold of 95.0-96.0%. The digital DNA-DNA hybridization values between C. albigriseus KCTC 42450T, M. terrestris KCTC 42635T and strain yh7-1T indicated that the new isolate represents a novel genomic species. According to the phenotypic and genotypic characteristics, strain yh7-1T should belong to the genus Chthonobacter, for which the name Chthonobacter rhizosphaerae sp. nov. (type strain yh7-1T = CGMCC 1.17236T = CCTCC AB 2019258T = KCTC 82185T) is proposed.


Assuntos
Citrus sinensis/microbiologia , Methylocystaceae/classificação , Methylocystaceae/genética , Rizosfera , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Methylocystaceae/isolamento & purificação , Fosfolipídeos/análise , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
7.
Metab Eng ; 61: 181-196, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479801

RESUMO

Methane, a non-expensive natural substrate, is used by Methylocystis spp. as a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2% H2 to the culture headspace had the most significant positive effect on the growth yield under CH4 (6%) and O2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (±0.52) to 13.82 (±0.69) mg cell dry weight per mmol CH4, while CH4 consumption was significantly reduced. Regardless of H2 addition, CH4 utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing O2/CH4 mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H2 addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H2 may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH4, such as the production of high-quality feed protein.


Assuntos
Hidrogênio/metabolismo , Metano/metabolismo , Methylocystaceae , Methylocystaceae/genética , Methylocystaceae/metabolismo
8.
Curr Microbiol ; 77(8): 1466-1475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32219473

RESUMO

Bensulfuron-methyl is an herbicide widely used for weed control although its residues cause damage to other crops during crop rotations. In this study, the biodegrading activity of bensulfuron-methyl by a plant growth-promoting bacterial strain was carried out. Methylopila sp. DKT isolated from soil was determined for bensulfuron-methyl degradation and phosphate solubilization in the liquid media and soil. Moreover, the effects of the herbicide on peanut development and the role of Methylopila sp. DKT on the growth promotion of peanut were investigated. The results showed that the isolate effectively utilized the compound as a sole carbon source and solubilized low soluble inorganic phosphates. Methylopila sp. DKT also utilized 2-amino-4,6-dimethoxypyrimidine, a metabolite of bensulfuron-methyl degradation, as a sole carbon and energy source, and released ammonium and nitrate. The supplementation with Methylopila sp. DKT in soil increased the peanut biomass and the phosphorus content in the plant. In addition, the inoculation with Methylopila sp. DKT in soil and peanut cultivation increased the bensulfuron-methyl degradation by 57.7% for 1 month, which suggests that both plants and the bacterial isolate play a key role in herbicide degradation. These results indicate that the studied strain has a high potential for soil remediation and peanut growth promotion.


Assuntos
Arachis/crescimento & desenvolvimento , Biodegradação Ambiental , Methylocystaceae/metabolismo , Microbiologia do Solo , Compostos de Sulfonilureia/metabolismo , Biomassa , Herbicidas/metabolismo , Methylocystaceae/genética , Fósforo/análise , Filogenia , RNA Ribossômico 16S/genética
9.
Microb Cell Fact ; 18(1): 104, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170985

RESUMO

BACKGROUND: Methylocystis parvus is a type II methanotroph characterized by its high specific methane degradation rate (compared to other methanotrophs of the same family) and its ability to accumulate up to 50% of its biomass in the form of poly-3-hydroxybutyrate (PHB) under nitrogen limiting conditions. This makes it a very promising cell factory. RESULTS: This article reports the first Genome Scale Metabolic Model of M. parvus OBBP. The model is compared to Genome Scale Metabolic Models of the closely related methanotrophs Methylocystis hirsuta and Methylocystis sp. SC2. Using the reconstructed model, it was possible to predict the biomass yield of M. parvus on methane. The prediction was consistent with the observed experimental yield, under the assumption of the so called "redox arm mechanism" for methane oxidation. The co-consumption of stored PHB and methane was also modeled, leading to accurate predictions of biomass yields and oxygen consumption rates and revealing an anaplerotic role of PHB degradation. Finally, the model revealed that anoxic PHB consumption has to be coupled to denitrification, as no fermentation of PHB is allowed by the reconstructed metabolic model. CONCLUSIONS: The "redox arm" mechanism appears to be a general characteristic of type II methanotrophs, versus type I methanotrophs that use the "direct coupling" mechanism. The co-consumption of stored PHB and methane was predicted to play an anaplerotic role replenishing the serine cycle with glyoxylate and the TCA cycle with succinyl-CoA, which allows the withdrawal of metabolic precursors for biosynthesis. The stored PHB can be also used as an energy source under anoxic conditions when coupled to denitrification.


Assuntos
Hidroxibutiratos/metabolismo , Redes e Vias Metabólicas/genética , Metano/metabolismo , Methylocystaceae/metabolismo , Oxigênio/metabolismo , Poliésteres/metabolismo , Methylocystaceae/genética
10.
Metab Eng ; 54: 191-199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30999053

RESUMO

Genome Scale Metabolic Models (GSMMs) of the recently sequenced Methylocystis hirsuta and two other methanotrophs from the genus Methylocystis have been reconstructed. These organisms are Type II methanotrophs with the ability of accumulating Polyhydroxyalkanoates under nutrient limiting conditions. For the first time, GSMMs have been reconstructed for Type II methanotrophs. These models, combined with experimental biomass and PHB yields of Methylocystis hirsuta, allowed elucidating the methane oxidation mechanism by the enzyme pMMO (particulate methane monooxygenase) in these organisms. In contrast to Type I methanotrophs, which use the "direct coupling mechanism", Type II methanotrophs appear to use the so called "redox arm mechanism". The utilization of the "redox arm mechanism", which involves the coupling between methane oxidation and complex I of the respiratory chain, was confirmed by inhibition of complex I with catechol. Utilization of the "redox arm" mechanism leads to lower biomass yields on methane compared to Type I methanotrophs. However, the ability of Type II methanotrophs to redirect high metabolic carbon fluxes towards acetoacetyl-CoA under nitrogen limiting conditions makes these organisms promising platforms for metabolic engineering.


Assuntos
Proteínas de Bactérias , Complexo I de Transporte de Elétrons , Genoma Bacteriano , Metano/metabolismo , Methylocystaceae , Modelos Biológicos , Oxigenases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Engenharia Metabólica , Methylocystaceae/genética , Methylocystaceae/metabolismo , Oxirredução , Oxigenases/genética , Oxigenases/metabolismo
11.
Antonie Van Leeuwenhoek ; 112(9): 1307-1316, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30972598

RESUMO

An aerobic facultatively methylotrophic bacterium, designated strain Das4.1T, was isolated from a root of Daucus carota L. The cells of this strain were observed to be Gram-stain negative, asporogenous, non-motile short rods multiplying by binary fission. Strain Das4.1T can utilise methanol, methylamine and a variety of polycarbon compounds as carbon and energy sources. C1-compounds were found to be assimilated via the isocitrate lyase-negative variant of the serine pathway. On medium with 0.5% methanol, growth of strain Das4.1T was observed at pH 5.5-9.0 (optimum, pH 6.0-7.0) and 18-37 °C (optimum, 24-29 °C) and in the presence of 0-2% (w/v) NaCl (optimum, 0.05%). Cells are catalase and oxidase positive and synthesise indole from L-tryptophan. The major fatty acids of methanol-grown cells were identified as C18:1ω7c, C18:0 and 11-methyl-C18:1ω7c. The predominant phospholipids were found to be phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The major respiratory quinone was identified as Q-10. The DNA G + C content of strain Das4.1T was determined to be 67.3 mol% (Tm). Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain Das4.1T belongs to the genus Methylopila and shows high sequence similarity to Methylopila oligotropha 2395AT (98.4%) and Methylopila capsulata IM1T (98.0%). However, the DNA-DNA relatedness of strain Das4.1T with M. oligotropha 2395AT was only 22 ± 3%. Based on genotypic, chemotaxonomic and physiological characterisation, the isolate can be classified as a novel species of the genus Methylopila, for which the name Methylopila carotae sp. nov. is proposed. The type strain is Das4.1T (= VKM B-3244T = CCUG 72399T).


Assuntos
Daucus carota/microbiologia , Methylocystaceae/classificação , Methylocystaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Methylocystaceae/genética , Methylocystaceae/fisiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , Raízes de Plantas/microbiologia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Microbiologyopen ; 8(6): e00771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548837

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced by some methanotrophic organisms such as those of the genus Methylocystis. This allows the conversion of a detrimental greenhouse gas into an environmentally friendly high added-value bioproduct. This study presents the genome sequence of Methylocystis hirsuta CSC1 (a high yield PHB producer). The genome comprises 4,213,043 bp in 4 contigs, with the largest contig being 3,776,027 bp long. Two of the other contigs are likely to correspond to large size plasmids. A total of 4,664 coding sequences were annotated, revealing a PHA production cluster, two distinct particulate methane monooxygenases with active catalytic sites, as well as a nitrogen fixation operon and a partial denitrification pathway.


Assuntos
Genoma Bacteriano , Methylocystaceae/genética , Poli-Hidroxialcanoatos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Metano/metabolismo , Methylocystaceae/classificação , Methylocystaceae/isolamento & purificação , Methylocystaceae/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Plasmídeos/genética
13.
J Agric Food Chem ; 67(3): 836-843, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30585487

RESUMO

Esterase SulE detoxicates a variety of sulfonylurea herbicides through de-esterification. SulE exhibits high activity against thifensulfuron-methyl but low activity against other sulfonylureas. In this study, two variants, m2311 (P80R) and m0569 (P80R and G176A), with improved activity were screened from a mutation library constructed by error-prone PCR. Variant m2311 showed a higher activity against sulfonylureas in comparison variant m0569 and was further investigated. The kcat/ Km value of variant m2311 for metsulfuron-methyl, sulfometuron-methyl, chlorimuron-ethyl, tribenuron-methyl, and ethametsulfuron-methyl increased by 3.20-, 1.72-, 2.94-, 2.26- and 2.96-fold, respectively, in comparison with the wild type. Molecular modeling suggested that the activity improvement of variant m2311 is due to the substitution of Pro80 by arginine, leading to the formation of new hydrogen bonds between the enzyme and substrate. This study facilitates further elucidation of the structure and function of SulE and provides an improved gene resource for the detoxification of sulfonylurea residues and the genetic engineering of sulfonylurea-resistant crops.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esterases/genética , Esterases/metabolismo , Methylocystaceae/enzimologia , Compostos de Sulfonilureia/metabolismo , Proteínas de Bactérias/química , Evolução Molecular Direcionada , Esterases/química , Variação Genética , Herbicidas/química , Herbicidas/metabolismo , Cinética , Methylocystaceae/química , Methylocystaceae/genética , Pirimidinas/química , Pirimidinas/metabolismo , Compostos de Sulfonilureia/química , Tiofenos/química , Tiofenos/metabolismo
14.
J Microbiol Biotechnol ; 28(10): 1706-1715, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30178643

RESUMO

Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. 18.8 µmol·l-1·d-1), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.


Assuntos
Actinomycetales/crescimento & desenvolvimento , Methylocystaceae/crescimento & desenvolvimento , Methylocystaceae/metabolismo , Interações Microbianas , Técnicas de Cultura Celular por Lotes , Biomassa , Técnicas de Cocultura , Expressão Gênica , Metano/análise , Metano/metabolismo , Methylocystaceae/genética , Oxigenases/genética
15.
J Proteome Res ; 17(9): 3086-3103, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30019905

RESUMO

Methylocystis sp. strain SC2 is a representative of the alphaproteobacterial methane oxidizers or type IIa methanotrophs. These microorganisms play a crucial role in methane cycling. Here, we developed an efficient analytical proteomics workflow for strain SC2. It tackles the major challenges related to the high amount of integral membrane proteins that need to be efficiently solubilized and digested for downstream analysis. Each step of the workflow, including cell lysis, protein solubilization and digestion, and MS peptide quantification, was assessed and optimized. Our new crude-lysate-MS approach proved to increase protein quantification accuracy and proteome coverage of strain SC2. It captured 62% of the predicted SC2 proteome, with up to 10-fold increase in membrane-associated proteins relative to less effective conditions. The use of crude cell lysate for downstream analysis showed to be highly efficient for SC2 and other members of the family Methylocystaceae. Using two contrasting nitrogen conditions, we further validated our workflow efficiency by analyzing the SC2 proteome for differentially expressed proteins involved in methane and nitrogen metabolism. Our crude-MS approach may be applied to a variety of proteomic workflows incorporating cell types with challenging solubilization properties. Data are available via ProteomeXchange with identifier PXD009027.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Meios de Cultura/química , Ontologia Genética , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Redes e Vias Metabólicas/genética , Methylocystaceae/genética , Anotação de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Proteoma/genética , Proteômica/instrumentação
16.
J Biosci Bioeng ; 126(6): 667-675, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29914801

RESUMO

Oharaeibacter diazotrophicus strain SM30T, isolated from rice rhizosphere, is an aerobic, facultative lanthanide (Ln3+)-utilizing methylotroph and diazotroph that belongs to the Methylocystaceae family. In this research, the complete genome sequence of strain SM30T was determined, and its methylotrophy modules were characterized. The genome consists of one chromosome and two plasmids, comprising a total of 5,004,097 bp, and the GC content was 71.6 mol%. A total of 4497 CDSs, 67 tRNA, and 9 rRNA were encoded. Typical alpha-proteobacterial methylotrophy genes were found: pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) (mxaF and xoxF1-4), methylotrophy regulatory proteins (mxbDM and mxcQE), PQQ synthesis, H4F pathway, H4MPT pathway, formate oxidation, serine cycle, and ethylmalonyl-CoA pathway. SDS-PAGE and subsequent LC-MS analysis, and qPCR analysis revealed that MxaF and XoxF1 were the dominant MDH in the absence or presence of lanthanum (La3+), respectively. The growth of MDH gene-deletion mutants on alcohols and qPCR results indicated that mxaF and xoxF1 are also involved in ethanol and propanol oxidation, xoxF2 participates in methanol oxidation in the presence of La3+, while xoxF3 was associated with methanol and ethanol oxidation in the absence of La3+, implying that XoxF3 is a calcium (Ca2+)-binding XoxF. Four Ln3+ such as La3+, cerium (Ce3+), praseodymium (Pr3+), and neodymium (Nd3+) served as cofactors for XoxF1 by supporting ΔmxaF growth on methanol. Some heavier lanthanides inhibited growth of SM30 on methanol. This study contributes to the understanding of the function of various XoxF-type MDHs and their roles in methylotrophs.


Assuntos
Genoma Bacteriano/genética , Metanol/metabolismo , Methylocystaceae/genética , Oxirredutases do Álcool/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Composição de Bases , Mapeamento Cromossômico , Etanol/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Methylocystaceae/metabolismo , Organismos Geneticamente Modificados , Oxirredução , Cofator PQQ/genética
17.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741624

RESUMO

Carbon monoxide (CO)-metabolism and phenotypic and phylogenetic characterization of a novel anaerobic, mesophilic and hydrogenogenic carboxydotroph are reported. Strain SVCO-16 was isolated from anaerobic sludge and grows autotrophically and mixotrophically with CO. The genes cooS and cooF, coding for a CO dehydrogenase complex, and genes similar to hycE2, encoding a CO-induced hydrogenase, were present in its genome. The isolate produces H2 and CO2 from CO, and acetate and formate from organic substrates. Based on the 16S rRNA sequence, it is an Alphaproteobacterium most closely related to the genus Pleomorphomonas (98.9%-99.2% sequence identity). Comparison with other previously characterized Pleomorphomonas showed that P. diazotrophica and P. oryzae do not metabolize CO, and P. diazotrophica does not grow anaerobically with organic substrates. Average nucleotide identity values between strain SVCO-16 and P. diazotrophica, P. oryzae or P. koreensis were 86.66 ± 0.21%. These values are below the boundary to define species (95%-96%). Digital DNA-DNA hybridization estimates between strain SVCO-16 and reference strains were also below the 70% threshold for species delineation: 29.1%-34.5%. Based on the differences in CO metabolism, genome analyses and cellular fatty acid composition, the isolate should be classified into the genus Pleomorphomonas as a representative of a novel species, Pleomorphomonas carboxyditropha. The type strain of Pleomorphomonas carboxyditropha is SVCO-16T (strain deposit numbers, DSM 106132T and TSD-119T).


Assuntos
Aldeído Oxirredutases/genética , Monóxido de Carbono/metabolismo , Methylocystaceae/genética , Methylocystaceae/metabolismo , Complexos Multienzimáticos/genética , Esgotos/microbiologia , Poluentes Atmosféricos/metabolismo , Anaerobiose/genética , Anaerobiose/fisiologia , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Methylocystaceae/classificação , Methylocystaceae/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Int J Syst Evol Microbiol ; 68(6): 2048-2053, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29701577

RESUMO

A Gram-reaction-negative, S-shaped, motile, poly-ß-hydroxybutyrate-accumulating, facultatively anaerobic, beige-pigmented bacterium, designated strain KMU-80T, was isolated from seawater collected from the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family Methylocystaceae, of the class Alphaproteobacteria, and that it possessed the greatest sequence similarity (96.7 %) to Terasakiella pusilla NBRC 13613T. The DNA G+C content of KMU-80T was 48.3 mol%, and ubiquinone 10 was the sole respiratory quinone. The predominant cellular fatty acids consisted of C18 : 1ω7c (60.2 %), C16 : 0 (13.4 %) and C16 : 1ω7c and/or C16 : 1ω6c (11.1 %). Strain KMU-80T had phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid and four unidentified lipids as polar lipids. Based on its distinct phylogenetic position and the combination of genotypic and phenotypic characteristics, this strain is considered to represent a novel species of the genus Terasakiella, for which the name Terasakiella salincola sp. nov. is proposed. The type strain of T. salincola sp. nov. is KMU-80T (= KCCM 90274T = NBRC 112846T). An amended description of the genus Terasakiella is also provided.


Assuntos
Methylocystaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hidroxibutiratos , Methylocystaceae/genética , Methylocystaceae/isolamento & purificação , Fosfolipídeos/química , Poliésteres , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
19.
Genome Biol Evol ; 10(2): 623-628, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390143

RESUMO

The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53 Mb chromosome and one plasmid, 175 kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum-iron and vanadium-iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.


Assuntos
Genoma Bacteriano , Methylocystaceae/genética , Adaptação Biológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Methylocystaceae/enzimologia , Methylocystaceae/fisiologia , Família Multigênica , Fixação de Nitrogênio , Oxigenases/genética , Oxigenases/metabolismo , Áreas Alagadas
20.
Int J Syst Evol Microbiol ; 67(8): 3010-3014, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28820127

RESUMO

A Gram-stain-negative, non-motile, aerobic, non-spore-forming, spherical bacterium (strain MIMtkB18T) was isolated from desert soil collected from part of a Mongolian Plateau, territory of Inner Mongolia, PR China. Cell growth could be observed at 20-45 °C (optimum at 40 °C), at a pH of 6-9 (optimum at pH 8.6) and in the presence of 0-1 % (w/v) NaCl (optimum 0 %). The genomic DNA G+C content was 69.6 mol%. 16S rRNA gene sequence analysis showed that strain MIMtkB18T was most closely related to Methylobrevis pamukkalensis PK2T (94.1 %), species of the genus Pleomorphomonas(93.4-94.0 %), and Hartmannibacter diazotrophicus E19T (93.9 %). The sole respiratory quinone was Q-10. The major fatty acids (>5 %) were C18 : 0 (5.7 %) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (81.6 %). Polar lipids were mainly composed of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine and unidentified phospholipids. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, it is concluded that strain MIMtkB18T represents a novel genus and species, for which the name Mongoliimonas terrestris sp. nov. is proposed. The type strain is MIMtkB18T (=KCTC 42635T=MCCC 1K00571T).


Assuntos
Clima Desértico , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Methylocystaceae/genética , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...